
High-Precision Computation:

Mathematical Physics and Dynamics

D. H. Bailey∗ R. Barrio† J. M. Borwein‡

September 26, 2011

Abstract

At the present time, IEEE 64-bit floating-point arithmetic is sufficiently accurate for
most scientific applications. However, for a rapidly growing body of important scientific
computing applications, a higher level of numeric precision is required. Such calculations are
facilitated by high-precision software packages that include high-level language translation
modules to minimize the conversion effort. This paper presents a survey of recent applica-
tions of these techniques and provides some analysis of their numerical requirements. These
applications include supernova simulations, climate modeling, planetary orbit calculations,
Coulomb n-body atomic systems, studies of the fine structure constant, scattering ampli-
tudes of quarks, gluons and bosons, nonlinear oscillator theory, experimental mathematics,
evaluation of recurrence relations, numerical integration of ODEs, computation of periodic
orbits, studies of the splitting of separatrices, detection of strange nonchaotic attractors,
Ising theory, quantum field theory, and discrete dynamical systems. We conclude that high-
precision arithmetic facilities are now an indispensable component of a modern large-scale
scientific computing environment.

1 Introduction

Virtually all present-day computer systems, from personal computers to the largest supercom-
puters, implement the IEEE 64-bit floating-point arithmetic standard, which provides 53 man-
tissa bits, or approximately 16 decimal digit accuracy. For most scientific applications, 64-bit
arithmetic is more than sufficient, but for a rapidly expanding body of applications, it is not. In
this paper we will examine a variety of applications where high-precision arithmetic is useful:
∗Lawrence Berkeley National Laboratory, Berkeley, CA 94720, dhbailey@lbl.gov. Supported in part by

the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and
Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231.
†Depto. Matemática Aplicada and IUMA, Universidad de Zaragoza, E-50009 Zaragoza, Spain

rbarrio@unizar.es. Supported in part by the Spanish research project MTM2009-10767.
‡Centre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle,

Callaghan, NSW 2308, Australia, jonathan.borwein@newcastle.edu.au. Supported in part by the Australian
Research Council.

1

1. Numerically sensitive calculations (ill-conditioned problems). Some scientific computations
include sensitive portions that produce inaccurate results when performed using straight-
forward algorithms and 64-bit arithmetic. These inaccurate results may in turn induce
other errors, such as taking the wrong path in a conditional branch. Often such errors can
be overcome by using higher-precision arithmetic in just one or two spots.

2. Long-time simulations. Almost any kind of physical simulation, if performed over many
time intervals, will eventually depart from reality, due to cumulative round-off error. High-
precision arithmetic can eliminate much of this error, although errors due to the discretiza-
tion of time and space may remain.

3. Large-scale simulations. Computations that are well-behaved on modest-sized problems,
such as those run on a single-CPU system, may exhibit significant numerical errors when
scaled up to the huge sizes typical of those now being run on large systems with many
Tbytes of memory and well over 100,000 processor cores.

4. Small-scale phenomena. When studying why some behavior appears in a system (or if truly
appears at all), it is often necessary to employ a very fine-scale resolution to “zoom” in on
the phenomena. These fine-scale computations often require higher-precision arithmetic
to fully resolve.

5. “Experimental mathematics” computations. Recent work in experimental mathematics
has highlighted the effectiveness of employing extremely high precision (hundreds or even
thousands of digits) to uncover new identities and relations. One example is the analytic
evaluation of classes of integrals that arise in mathematical physics.

With regards to item 1, it should be kept in mind that the vast majority of persons currently
performing numerical computations are not experts in numerical analysis, and this fact is not
likely to change anytime soon. For example, in 2010 at the University of California, Berkeley,
a total of 219 students enrolled in the two sections of Math 128A, a one-semester introductory
numerical analysis course required of applied math majors, but only 24 enrolled in Math 128B,
a more advanced course. By contrast, in the same year a total of 870 seniors graduated in the
Division of Mathematical and Physical Sciences (including Mathematics, Physics and Statistics),
the College of Chemistry and the College of Engineering (including Computer Science), most of
whom will do some numerical computation in their career work. If we add to this list graduates
in other fields with computational components, such as biology, geology, medicine and social
sciences, we conclude that only about 2% of the Berkeley graduates each year who likely will
be using computational tools in their career work have advanced training in numerical analysis.
There is no reason to believe that this ratio is significantly higher elsewhere.

Thus, for the foreseeable future, almost all technical computing will be performed by persons
who have had only basic training in numerical analysis, or none at all. Such persons typically
rely on relatively straightforward algorithms and pre-existing, off-the-shelf software, focusing
most of their efforts on details specific to their discipline (physics, engineering, psychology, etc.).
When numerical difficulties are encountered, they seek a simple and easy-to-implement remedy,
instead of attempting wholesale algorithm replacement.

2

High-precision arithmetic is an attractive option for such users, because even in situations
where numerically better behaved algorithms are known in the literature that may resolve a
numerical problem, it is often both easier and more reliable to simply increase the precision
used for the existing algorithm, using tools such as those described in Section 2. At the very
least, using high-precision arithmetic to rectify numerical problems buys some time while a
better long-term solution is sought.

1.1 Extra precision versus algorithm changes

The following example illustrates some of the issues involved. Suppose one wishes to recover the
integer polynomial that produces the result sequence (1, 32771, 262217, 885493, 2101313,
4111751, 7124761) for integer arguments (0, 1, . . . , 6). While there are several ways to approach
this problem, many scientists and engineers will employ a least-squares scheme, since this is a
very familiar tool in scientific data analysis, and efficient library software is readily available.
Indeed, this approach is suggested in a widely used reference [81, pg. 44]. In this approach, one
constructs the (n+ 1)× (n+ 1) linear system

n+ 1
∑n

k=1 xk · · ·
∑n

k=1 x
n
k∑n

k=1 xk
∑n

k=1 x
2
k · · ·

∑n
k=1 x

n+1
k

...
...

. . .
...∑n

k=1 x
n
k

∑
k=1 x

n+1
k · · ·

∑n
k=1 x

2n
k

a0

a1
...
an

 =

∑n

k=1 yk∑n
k=1 xkyk

...∑n
k=1 x

n
kyk

 , (1)

where (xk) are the integer arguments and (yk) are the sequence values. Then one solves for
(a1, a2, · · · , an) using, for example, LINPACK [53] or LAPACK [52] software.

In the specific problem mentioned above, a double-precision (64-bit) floating-point imple-
mentation of the least-squares scheme succeeds in finding the correct polynomial coefficients,
which, after rounding to the nearest integer, are (1, 0, 0, 32769, 0, 0, 1), or, in other words,
f(x) = 1 + (215 + 1)x3 + x6. Unfortunately, this scheme fails to find the correct polynomial for
a somewhat more difficult problem, namely to find the degree-8 polynomial that generates the
9-long sequence (1, 1048579, 16777489, 84941299, 268501249, 655751251, 1360635409,
2523398179, 4311748609), for integer arguments (0, 1, · · · , 8). The program finds approximate
degree-8 polynomial coefficients, but they are not correct, even after rounding to the nearest
integer — too much floating-point round-off error has occurred.

Many numerical analysts will point out here that this approach is not the best scheme for
this type of problem, in part because the Vandermonde matrix system (1) is known to be rather
unstable (this is also pointed out in [81, pg. 44]). A more effective approach in the cases such
as this, where the number of inputs is one greater than the degree, is to employ the Lagrange
interpolating polynomial, which, given a set of n + 1 data points (x0, y0), (x1, y1), · · · , (xn, yn),
is defined as L(x) =

∑n
j=0 yjpj(x), where

pj(x) =
∏

0≤i≤n, i 6=j

x− xi
xj − xi

. (2)

In the problem at hand, xj = j for 0 ≤ j ≤ n. In order to minimize numerical error, one should
separately compute the polynomial in the numerator and the factorials in the denominator before

3

Precision Problem degree
Algorithm (digits) 6 8 12
Least-squares 16 succeeded failed failed

31 succeeded succeeded succeeded
Lagrange 16 succeeded succeeded failed

31 succeeded succeeded succeeded
Demmel-Koev 16 succeeded succeeded failed

Table 1: Success and failure of various polynomial data fit schemes

performing the division. In this way, the chief source of numerical error is the evaluation of the
inner products inherent in the formula L(x) =

∑n
j=0 yjpj(x).

This scheme, implemented with 64-bit IEEE arithmetic, correctly deduces that the 9-long
data sequence above is produced by the polynomial 1 + (220 + 1)x4 + x8. However, this scheme
fails when given the more challenging 13-long input data vector (1, 134217731, 8589938753,
97845255883, 549772595201, 2097396156251, 6264239146561, 15804422886323, 35253091827713,
71611233653971, 135217729000001, 240913322581691, 409688091758593), which is generated by
1 + (227 + 1)x6 + x12.

The state-of-the-art algorithm in this area, as far as the present authors are aware, is a
technique due to James Demmel and Plamen Koev [50], which accurately solves “totally positive”
systems such as (1), where the determinant of any square submatrix is positive. A Matlab
implementation of this scheme is available at [72]. We found that this program solves the
degree-6 and degree-8 problems mentioned above, but, like the Lagrange polynomial scheme,
fails for the degree-12 problem.

However, there is another approach to these problems: simply modify the source code of any
reasonably effective solution scheme to invoke higher-precision arithmetic. For example, when we
modified our Fortran-90 least-squares scheme to employ double-double precision (approximately
31-digit accuracy), using the QD software mentioned in Section 2, we were able to correctly
solve all three problems (degrees 6, 8 and 12). Converting the Lagrange polynomial scheme to
use double-double arithmetic was even easier, and the resulting program also solved all three
problems without incident. These results are summarized in Table 1. No entry is listed for the
Demmel-Koev scheme with 31-digit arithmetic, because we relied on a Matlab implementation
for which a double-double version is not available, although we have no reason to doubt that it
would also succeed.

2 High-precision software

Efficient algorithms are known for performing, to any desired precision, the basic arithmetic
operations, square and n-th roots, and most transcendental functions [35, pp. 215–245], [36,
pp. 299–318], [37, 38, 39, 44]. Software packages implementing these algorithms have been
available since the early days of computing. However, many of these packages have required one

4

to rewrite a scientific application with individual subroutine calls for each arithmetic operation.
The difficulty of writing and debugging such code has deterred all but a few computational
scientists and mathematicians from using such tools.

In the past 10 years or so, high-precision software packages have been produced that include
high-level language interfaces that make such conversions relatively painless. These packages
typically utilize custom datatypes and operator overloading features, which are available in
languages such as C++ and Fortran-90, to facilitate conversion. Even more advanced high-
precision facilities are available in the commercial products Mathematica and Maple, which
incorporate arbitrary-precision arithmetic in a naturally integrated way for a wide range of
functions, many more than are typically available from freely available software. These two
commercial products also provide facilities to convert existing scientific programs written in
other languages, although human intervention is often required.

Here are some high-precision arithmetic software packages that are freely available on the
Internet, listed in alphabetical order. The ARPREC, QD and MPFUN90 packages are available
from the first author’s website: http://crd.lbl.gov/~dhbailey/mpdist.

• ARPREC. This package includes routines to perform arithmetic with an arbitrarily high
level of precision, including many algebraic and transcendental functions. High-level lan-
guage interfaces are available for C++ and Fortran-90, supporting real, integer and com-
plex datatypes.

• GMP. This package includes an extensive library of routines to support high-precision
integer, rational and floating-point calculations. GMP has been produced by a volunteer
effort and is distributed under the GNU license by the Free Software Foundation. It is
available at http://gmplib.org.

• MPFR. The MPFR library is a C library for multiple-precision floating-point computations
with exact rounding, and is based on the GMP multiple-precision library. Additional
information is available at http://www.mpfr.org.

• MPFR++. This is a high-level C++ interface to MPFR. Additional information is avail-
able at http://perso.ens-lyon.fr/nathalie.revol/software.html. A similar pack-
age is GMPFRXX, available at http://math.berkeley.edu/~wilken/code/gmpfrxx.

• MPFUN90. This is similar to ARPREC in user-level functionality, but is written entirely
in Fortran-90 and provides a Fortran-90 language interface.

• QD. This package includes routines to perform “double-double” (approx. 31 digits) and
“quad-double” (approx. 62 digits) arithmetic. High-level language interfaces are available
for C++ and Fortran-90, supporting real, integer and complex datatypes. This software is
much faster than using arbitrary precision software when only 31 or 62 digits are required.

Just as an example of the simple case, the QD package, which provides double-double and
quad-double arithmetic, is based on the following algorithms for the accurate addition and

5

multiplication of two IEEE 64-bit operands using rounded arithmetic, due to Knuth [71] and
Dekker [49]:

function [x, y] = TwoSum(a; b)
x = fl(a+ b)
z = fl(x− a)
y = fl((a− (x− z)) + (b− z))

function [x, y] = Split(a)
c = fl(factor · a) (in double precision factor = 227 + 1)
x = fl(c− (c− a))
y = fl(a− x)

function [x, y] = TwoProd(a; b)
x = fl(a · b)
[a1, a2] = Split(a)
[b1, b2] = Split(b)
y = fl(a2 · b2− (((x− a1 · b1)− a2 · b1)− a1 · b2))

In the above, fl stands for the floating-point evaluation using rounded arithmetic. These algo-
rithms satisfy the following error bounds [79] (where F denotes the set of floating-point numbers
and u the rounding unit of the computer):

Theorem 1 For a, b ∈ F and x, y ∈ F, TwoSum and TwoProd verify

[x, y] = TwoSum(a, b), x = fl(a+ b), x+ y = a+ b, |y| ≤ u|x|, |y| ≤ u|a+ b|,
[x, y] = TwoProd(a, b), x = fl(a× b), x+ y = a× b, |y| ≤ u|x|, |y| ≤ u|a× b|.

One downside of using high-precision software is that such facilities greatly increase computer
run times, compared with using conventional 64-bit arithmetic. For example, computations
using double-double precision arithmetic typically run five to ten times slower than with 64-bit
arithmetic. This figure rises to at least 25 times for the quad-double arithmetic, to more than 100
times for 100-digit arithmetic, and to well over 1000 times for 1000-digit arithmetic. However,
in many cases, high-precision arithmetic is only needed in one or two places in the code, so that
the total run time is not much greater than the standard code. Even when major slowdowns
are inevitable, modern highly parallel computer technology often permits such calculations to
be completed in reasonable wall-clock run times.

3 Applications of high-precision arithmetic

In this section we give a selection of five directly applied applications:

3.1 Planetary orbit calculations

One central question of planetary theory is whether the solar system is stable over cosmological
time frames (many millions or billions of years). Planetary orbits are well known to exhibit

6

chaotic behavior. Indeed, as Isaac Newton once noted, “The orbit of any one planet depends on
the combined motions of all the planets, not to mention the actions of all these on each other.
To consider simultaneously all these causes of motion and to define these motions by exact laws
allowing of convenient calculation exceeds, unless I am mistaken, the forces of the entire human
intellect.” [56, p. 121].

Figure 1: Divergence between nearby trajectories, integrated with four different numerical in-
tegrators (the Wisdom-Holman symplectic integrator with two stepsizes, the NBI’s 14th order
Cowell-Sörmer integrator and the Taylor method to check the results). Left figure: a chaotic
trajectory with a Lyapunov time of about 12 million years. Right figure: a trajectory showing
no evidence of chaos over 200My. Both trajectories are within observational uncertainty of the
outer planetary positions. (Reproduced with permission from [67])

Scientists have studied this question by performing very long-term simulations of planetary
motions. These simulations typically do fairly well for long periods, but then fail at certain
key junctures, such as when two planets pass fairly close to each other. Researchers have found
that double-double or quad-double arithmetic is required to avoid severe numerical inaccuracies,
even if other techniques are employed to reduce numerical error [73]. A team led by W. Hayes
studied solar system orbits using various numerical ordinary differential equation (ODE) inte-
grators, checked to higher precision using a Taylor series integrator, performed using 19-digit
Intel extended precision [67] (see Figure 1). Applegate and others employed a special-purpose
computer to investigate the stability of the outer solar system [5]. Note that the use of high-
precision in long term integrations is limited to check in short-medium integration times other
numerical integrators more suitable for these purposes. In the Figure 1 we observe that all the
integrators work well as shown by the close behavior of all the simulations in a case of initial
conditions leading to a chaotic or regular movement, and so as Hayes showed, this lead to that
these two options are not numerical artefacts, but a real consequence of the uncertainty and the
mixing structure of the solar system.

7

3.2 High-precision solution of ODEs: Taylor method

In several applications of dynamical systems we need to integrate the relevant differential equa-
tion, normally for a short time, with very high precision. Moreover, in the study of the bifur-
cations and stability of periodic orbits (by instance) we also have to integrate the first order
variational equations using as initial conditions the identity matrix. To reach this goal we may,
obviously, use any numerical ODE method such as Runge-Kutta. During the last few years, the
Taylor method has emerged as a preferred method in the computational dynamics community
[86].

10
−30

10
−20

10
−10

10
−1

10
0

10
1

C
PU

 ti
m

e

dop853
odex
TIDES

100 200 300 400 500
0

2

4

6

8

10

12

14

16

−Log
10

(Relative error)

C
PU

 ti
m

e

TIDES (variable precision)

Relative error

quadruple precision multiple precision

Figure 2: Left: Precision vs. CPU time diagram in quadruple precision for the numerical integration of
the unstable periodic orbit LR for the Lorenz model using a Runge-Kutta code (dop853), an extrapolation
code (odex) and a Taylor series method (TIDES). Right: Precision vs. CPU time diagram for the multiple-
precision numerical integration of an unstable periodic orbit for the Lorenz model using the TIDES code.

The Taylor method is one of the oldest numerical methods for solving ordinary differential
equations, but it is scarcely used in the numerical analysis community. The formulation is quite
simple [22, 25, 47]. Let us consider the initial value problem ẏ = f(t, y). Now, the value of the
solution at ti (that is, y(ti)) is approximated by yi from the n-th degree Taylor series of y(t) at
t = ti (the function f has to be a smooth function). So, denoting hi = ti − ti−1,

y(t0) =: y0,

y(ti) ' yi−1 + f(ti−1,yi−1)hi + . . .+
1
n!
dn−1f(ti−1,yi−1)

dtn−1
hni =: yi.

Therefore, the problem is reduced to the determination of the Taylor coefficients {1/(j +
1)! djf/dtj}. This may be done quite efficiently by means of the automatic differentiation (AD)
techniques. Note that the Taylor method has several good features (for details see [22, 23, 25]).

8

In the Fig. 2 we present some comparisons on the Lorenz model [77] for the classical Saltz-
man’s parameter values using the Taylor method (TIDES code) and the well established codes
dop853 (a Runge-Kutta code) and odex (an extrapolation code) developed by Hairer and Wan-
ner [63]. We observe that in quadruple precision quite soon the Taylor method becomes the
fastest and, as expected, the odex code is more efficient than the Runge-Kutta code (note that
odex is a variable order code, as TIDES, and so it is more adaptable than the fixed order method).
In double precision the most efficient code is the Runge-Kutta code, but for high precision the
Taylor series method is the only reliable method among the standard methods. Note that the
computer time for a high-precision numerical integration of one period (T = 1.55865) of the
LR unstable periodic orbit (in symbolic dynamics notation one loop around the left equilibrium
point, and one around the right one [90]) maintaining 500 digits is just around 16 seconds using
a normal desktop computer, a quite reasonable time.

−10 0 10 −20
0

200

5

10

15

20

25

30

35

40

45

y
x

z

 1 period - TIDES (16 digits)
 16 periods -TIDES (300 digits)

First point TIDES (16 digits)
First-Last point TIDES (300 digits)

Last point TIDES (16 digits)

Figure 3: Numerical integration of the L25R25 unstable periodic orbit for the Lorenz model during 16
time periods using the TIDES code with 300 digits and 1 time periods using double precision.

So, one question is, do we really need such a large accurate numerical integrations in these
kind of systems? To illustrate the need we show in Fig. 3 the numerical simulations of 16 time
periods using the the TIDES code with 300 digits and 1 time period using double precision for
the numerical simulation of the L25R25 unstable periodic orbit for the Lorenz model. Now we
lose more than 16 digits on each period (the period of the orbit is T = 33.890206423038 and
the largest Lyapunov exponent λ = 0.958, so exp(λT) ≈ 1.5324 · 1016), and therefore it is not
possible to simulate any period of this orbit in double precision. The double precision orbit is
not periodic (see the zoom) and it also loses the symmetry of the correct orbit. Note that this
simulation is among the longest precise numerical calculations presented in the literature for the

9

Lorenz model, up to a final time tf ≈ 1150. Obviously with the code TIDES one can go as far
as his/her computer is able to compute.

It is important to remark that nowadays there are excellent free-software implementations
of the Taylor series method, with arbitrary high-precision, for the numerical solution of ODEs
and for the automatic determination of the solution of high-order variational equations. The
software TIDES [1, 29] (Taylor series Integrator for Differential EquationS) is a powerful im-
plementation of this technology (see http://gme.unizar.es/software/tides or send an email to
tides@unizar.es or rbarrio@unizar.es).

3.3 Evaluating recurrence relations

The numerical evaluation of recurrences have the potential of being unstable [58] and in a
large number of numerical algorithms we have to use them. A classical example of unstable
recurrence is the evaluation of the Bessel function of first kind Ji(x) [3] by means of the three-
term recurrence

Jn+1(x) =
2n
x
Jn(x)− Jn−1(x). (3)

In this case, we miss almost immediately all the significant digits (in fact at n = 7) and there is
no way of using extended precision to improve the results. This is illustrated in figure 4, where
the use of the recurrence gives a growing sequence, when the real result is a fast decreasing
one. The reason of this disastrous build-up of errors [58] is due to the fact that the Bessel
function of the first kind, but also the Bessel function of the second kind Yi(x) are solutions
of the recurrence relation (3) and Ji(x)/Yi(x) ∼ (x/2)2i/(2(i!)2) as i → ∞, and so Ji(x) is a
(highly) minimal solution at infinity. This implies that any error is extremely amplified and the
numerical solution goes quite fast to the dominant one. In this case we have to look for another
completely different algorithm.

0 10 20 30 40 50 60 70 80 90 100
10

−200

10
−100

10
0

10
100

10
200

i

|J
i(1

)|

evaluated from the recurrence
correct value

Figure 4: Behavior of the evaluated values of the Bessel function Ji(1) using the recurrence (3).

This example shows that in many situations we have to take into account if the problem has
a severe instability, that cannot be avoided using high-precision, or, on the contrary is unstable
but it can be solved just by increasing the precision.

In some circumstances, the evaluation is stable, as in the evaluation of a Chebyshev series
approximation of a function (except in “ill conditioned cases”), but in other cases we have a

10

slightly unstable algorithm and we may have no other known option. In such cases a numerical
analyst may work on finding a stable algorithm but an “applied user” needs a fast solution. So,
one answer is the use of high-precision (in severe instabilities we have to search another method
as commented before), as a fast option when no stable algorithm is known.

We next discuss two cases concerning with orthogonal polynomial series and the recurrences
used in their evaluation. In the first example, the combined use of double-precision and high-
precision controlled via theoretical bounds (running error bounds) permits to compute and
evaluate series of Sobolev orthogonal polynomials (jus as an example of new families of orthog-
onal polynomials). And later, a modification, using ideas of high-precision computation, of the
standard algorithm to evaluate Chebyshev series in ill-conditioned situations gives a relative
accurate algorithm.

3.3.1 Sobolev orthogonal polynomials

The use of the classical families of orthogonal polynomials has been extended to almost all
mathematical and physical disciplines, including approximation theory, spectral methods, rep-
resentation of potentials and others. In the last few years, researchers have studied different
extensions, like orthogonal polynomials in Sobolev spaces [51]. One particular case of inter-
est is when measures related to derivatives are purely atomic, with a finite number of mass
points. That is, given a set of K evaluation points {c1, . . . , cK} (the support of the discrete
measure), a set of indexes that indicate the maximum order of derivatives in each evaluation
point {r1, . . . , rK}, and a set of non-negative coefficients {λji | j = 1, . . . ,K; i = 0, . . . , rj}, we
define the Sobolev inner product

〈p, q〉W =
∫

R
p(x) q(x) dµ0(x) +

K∑
j=1

rj∑
i=0

λji p
(i)(cj) q(i)(cj), λji ≥ 0. (4)

This particular case is an important instance of the class of discrete Sobolev inner products.
Thus, we want to study what happens when we face to the problem of evaluating a finite series
of orthogonal polynomials with respect to this discrete Sobolev inner product. In [27, 30] it was
proposed the algorithms for the generation and evaluation of these polynomials. The problem is
that the algorithms are slightly unstable, and so, a combination of double and multiple precision
is required. This may be done in such a way that the theoretical error bounds permit us to use
high-precision just on the unstable cases, and so the computational complexity does not grows
significatively.

In Figure 5 we show the behavior of some theoretical error bounds [30]: a backward error
bound, the running error bound and the relative error in a multiple-precision evaluation of a
Sobolev series. Note that we present relative error bounds and relative rounding errors, that is,
for q(x) 6≈ 0 we divide by |q(x)|. We have up to degree 50 of the function f(x) = (x+1)2 sin(4x)
in Chebyshev-Sobolev orthogonal polynomials, considering one mass point c = 1 up to first
derivative in the discrete part of the inner product. In the figures on the left we use double
precision (53 bits on the mantissa) and on the right we use multiple precision (96 bits on the
mantissa for x < −0.5 (on the left of the vertical line) and 64 for x > −0.5). The turning point

11

-2 -1 0 1 2

10-20

10-10

100

1010

-2 -1 0 1 2

10-20

10-10

100

1010

10-30 10-30

BE

RE

Error

BE

RE

Error

double precision multiple precision

-0.5
point x point x

Figure 5: Behavior of the theoretical error bounds (BE a backward error bound and RE for
the running error bound) and the relative error in the double- and multiple-precision evaluation
of the Chebyshev-Sobolev approximation of degree 50 of the function f(x) = (x + 1)2 sin(4x),
where the discrete Sobolev measure have one mass point c = 1 up to 1st derivative in the discrete
part of the inner product. In the figure on the left we use double precision and on the right
multiple-precision (on the left of the vertical line we use 96 bits on the mantissa and 64 on the
right part). (Reproduced with permission from [30]).

x = −0.5 is the point where the relative running error in double precision is greater than 10−10.
Therefore, from the figures we can observe how the combined use of rounding error bounds
(in this case the running error bound) and multiple-precision libraries permits us to evaluate
Sobolev series accurately.

This example shows that although in some situations the recurrences to evaluate new fam-
ilies of orthogonal polynomials may lead to slightly unstable algorithms, the combination of
theoretical bounds and high-precision techniques give rise to efficient and accurate algorithms.

3.3.2 Chebyshev series

Another situation where high precision is useful is in evaluating “ill-conditioned” polynomials.
For instance, if one wishes to evaluate the polynomial p(x) = (x− 0.75)7(x− 1)10 close to one of
its multiple roots, one will experience numerical difficulties. One solution is to find an optimal
polynomial basis, although this may not be practical in many real-world situations. Another
option is to use a good algorithm (e.g., Horner’s algorithm for power series, the de-Calteljau’s
algorithm for the Bernstein basis and Clenshaw’s algorithm for classical orthogonal polynomial
basis), implemented with high-precision arithmetic. A third option, which is quite attractive
when one does not want to deal with high-precision software, is to employ some ideas of com-
pensated algorithms that recently emerged in stability analysis [79, 82]. This approach permits
one to use double precision arithmetic, yet still maintain the quality of the numerical evaluations
with a relative error on the order of the rounding unit u, plus the conditioning of the problem
times the square of the rounding unit. The basis of these algorithms are the TwoSum and TwoProd
schemes mentioned in Section 2. For instance, recently Graillat et al. [60] developed a “compen-

12

sated” version of the Horner’s algorithm. Also, H. Jiang et al. [70] developed a “compensated”
version of Clenshaw’s algorithm to evaluate a finite series of Chebyshev orthogonal polynomials
p(x) =

∑n
j=0 ajTj(x). For this compensated algorithm (and all the other ones) it is possible to

prove the following relative error bounds:

Theorem 2 [70] Let p(x) =
∑n

i=0 aiTi(x) be a polynomial in Chebyshev form. If the condition
number for polynomial evaluation of p(x) at entry x is defined by

cond(p, x) =
p̃(|x|)
|p(x)|

=

∑n
j=0 |aj |T̃j(|x|)
|
∑n

j=0 ajTj(x)|
, (5)

with T̃j(|x|) the absolute polynomials associated with Tj(x) [70], then the relative forward error
bounds of the Clenshaw algorithm and compensated Clenshaw algorithm are such that

|Clenshaw(p, x)− p(x)|
|p(x)|

≤ O(u) · cond(p, x), (6)

|CompClenshaw(p, x)− p(x)|
|p(x)|

≤ u+O(u2) · cond(p, x). (7)

0.749 0.75 0.751
−2

−1

0

1

2
x 10−12

0.749 0.75 0.751
−2

0

2
x 10−26

Clenshaw CompClenshaw

point x point x

Figure 6: Evaluation of p(x) = (x−0.75)7(x−1)10 in the neighborhood of the multiple root x =
0.75, using the algorithms of Clenshaw (left) and Compensated Clenshaw (right). (Reproduced
with permission from [70]).

This theorem shows one particularly nice feature of compensated algorithms, namely that
the effect of the conditioning of the problem is delayed up to second order in the rounding unit
u, yielding highly accurate (in relative error) computations.

Figure 6 presents the evaluation of the polynomial p(x) = (x−0.75)7(x−1)10 for 400 equally
spaced points in the interval [0.74855, 0.75145]. It is clear that the compensated Clenshaw’s
algorithm gives a much smoother solution than the original Clenshaw’s algorithm. Moreover,
the relative error is always (except when p(x) is very close to zero) of the order of the rounding
unit u. This is often a crucial consideration in algorithms for locating zeros of polynomials in

13

floating point arithmetic, because oscillations like the ones presented on the left figure can make
impossible to obtain accurate results.

While compensated algorithms are often quite effective, they are not suitable for all sit-
uations, and so the use of high-precision software such as the QD library [69] is sometimes
required.

3.4 Computing the “skeleton” of periodic orbits

In the words of Henri Poincaré, periodic orbits form the “skeleton” of a dynamical system and
provide much useful information. Therefore, the search for periodic orbits is a quite old problem
and numerous numerical and analytical methods have been designed for them. Here we mention
just two methods that have been used with high-precision in the literature: the Lindstedt-
Poincaré technique [89] and one of the most simple and powerful method to find periodic orbits,
namely the systematic search method [24], where one takes advantage of symmetries of the
system to find symmetric periodic orbits [74].

Theorem 3 Let o(x) be an orbit of a flow of an autonomous vector field dx/dt = f(x) with
a reversal symmetry S (thus dS(x)/dt = −f(S(x))). Then, an orbit o(x) intersects Fix(S) :=
{x |S(x) = x } in precisely two points if and only if the orbit is periodic (and not a fixed point)
and symmetric with respect to S.

The above results were already known by Birkhoff, DeVogelaere and Strömgren (among
others) and were used to find symmetric periodic orbits.

The usage of high-precision numerical integrators in the determination of periodic orbits is
required in the search of highly unstable periodic orbits. For instance, in Figure 7 we show
the computed symmetric periodic orbit for the 7 + 2 Ring problem using double and quadruple
precision [26]. The (n + 2)-body Ring problem [26] describes the motion of an infinitesimal
particle attracted by the gravitational field of n+1 primary bodies, n in the vertices of a regular
polygon that is rotating on its own plane about the center with a constant angular velocity.
Each point on the figures corresponds to the initial conditions of one symmetric periodic orbit,
and the grey area corresponds to regions of forbidden motion (delimited by the limit curve).
Note that in order to avoid “false” initial conditions it is useful to check if the initial conditions
generate a periodic orbit up to a given tolerance level. But in the case of highly unstable periodic
orbits we may lose several digits in each period, so that double precision is not enough in many
unstable cases, resulting in gaps in the figure.

The Lindstedt-Poincaré method [89] for computing periodic orbits is based on the Lindstedt-
Poincaré technique of perturbation theory, Newton’s method for solving nonlinear systems and
Fourier interpolation. D. Viswanath [90] uses this algorithm in combination with high-precision
libraries to obtain periodic orbits for the Lorenz model at the classical Saltzman’s parame-
ter values. This procedure permits one to compute, to high accuracy (more than 100 digits
of precision), highly unstable periodic orbits (for instance the orbit with symbolic dynamics
LRL2R2 · · ·L15R15 has a leading characteristic multiplier 3.06× 1059, which means that we can
expect that at each period we lose around 59 digits of precision). For these reasons, high-
precision arithmetic plays a fundamental role in the study of the fractal properties of the Lorenz

14

−5 −4 −3 −2 −1 0 1 2
−8

−7

−6

−5

−4

coordinate x

Ja
co

bi
 c

on
st

an
t C

−5 −4 −3 −2 −1 0 1 2
−8

−7

−6

−5

−4

coordinate x

Ja
co

bi
 c

on
st

an
t C

limit
m=1
m=2
m=3
m=4

B

A

Figure 7: Symmetric periodic orbits (m denotes the multiplicity of the periodic orbit) in the most
chaotic zone of the 7 + 2 Ring problem using double (A) and quadruple (B) precision. (Reproduced with
permission from [24]).

attractor (see Fig. 8) and in a consistent formal development of complex singularities of the
Lorenz system using psi series [90, 91].

Another simpler option to compute high-precision periodic orbits has been proposed recently
in [2], where the use of the Taylor series method permits to apply modified versions of the Newton
method to obtain periodic orbits with more than 1000 precision digits. Figure 9 presents, as
an example, the computational relative error vs. CPU time and number of iterations in the
1000 precision digits computation of the periodic orbits LR and LLRLR of the Lorenz model.
The simulations have been done in a personal computer, what that means that nowadays any
researcher is able to use such techniques in his/her research. This kind of studies permits to say
that a deep and “microscopic” analysis in nonlinear dynamics is become available with the new
algorithms and techniques of high-precision.

3.5 Divergent asymptotic series and homoclinic phenomena

One interesting phenomenon in dynamical systems arises in the study of the splitting of separa-
trices of area preserving maps. Numerical difficulties arise because this phenomena can exhibit

15

Figure 8: Fractal property of the Lorenz attractor. On the first plot, the intersection of an
arbitrary trajectory on the Lorenz attractor with the section z = 27. The plot shows a rectangle
in the x− y plane. All later plots zoom in on a tiny region (too small to be seen by the unaided
eye) at the center of the red rectangle of the preceding plot to show that what appears to be a
line is in fact not a line. (Reproduced with permission from [91]).

0 200 400 600 800 1000
10

−2

10
0

10
2

10
4

−log
10

|error|

C
PU

 ti
m

e

Lorenz model

1 2 3 4 5 6 7 8 910
0

10
1

10
2

10
3

number of iterations

−
lo

g 10
|E

rr
or

|

Lorenz model

Quadratic convergence

LR
LLRLR

LR
LLRLR

O(log (precision)4)10

Figure 9: Computational relative error vs. CPU time and number of iterations in the 1000 preci-
sion digits computation of the periodic orbits LR and LLRLR of the Lorenz model. (Reproduced
with permission from [2]).

exponentially small splitting [59, 64].
For instance, the most common paradigmatic example is the standard map defined by

16

1 2 3 4 5 6

1

2

3

0
0

α
standard map

(ε=1)

0

3
pendulum

quadratic map

asymmetric cubic map

(ε=1)

x

y

y

Figure 10: Left: Phase-space for the pendulum equations with the separatrix in red and the
discrete version (standard map) for ε = 1 with the stable and the unstable separatrices. Right:
stable and the unstable separatrices for the quadratic map and the asymmetric cubic map.
(Partially reproduced with permission from [59])

(x, y) 7→ (x̂, ŷ) where
ŷ = y + ε sinx, x̂ = x+ ŷ

and ε is a small positive constant. This map can be obtained, for example, by a simple time
discretization (a symplectic Euler of discretization step

√
ε) of the pendulum equation ẋ = y, ẏ =

sinx [64]. The phase space structure of both systems, the continuous case and the map, are
very different (except for small values of ε). In fact, the pendulum problem is an integrable
system and its phase space is very regular (see Fig. 10). There is a unique separatrix that
connect the hyperbolic fixed point at 0 and at 2π, that is, the unstable manifold at 0 coincide
with the stable manifold at 2π. When we see the map, the two manifolds do not coincide and so
the separatrix splits (splitting of separatrices). Now we have transverse intersection points that
gives homoclinic points and that imply the existence of complex dynamics or chaotic motion.
Therefore the study of this phenomena of splitting of separatrices gives a deep information about
the system, and so related with this, it is important to study the angle between the stable and
the unstable separatrices at the intersection points. If the angle does not vanish we may affirm
that this phenomena occurs. In Fig. 10 we illustrate also the phenomena with two other maps
(the quadratic map and the asymmetric cubic map [59]).

An asymptotic formula for the angle between the stable and the unstable separatrices for

17

the standard map at the primary homoclinic point was given by Lazutkin [76]:

α =
π

ε
e−

π2
√
ε
(
1118.8277059409 . . .+O(

√
ε)
)
.

As a result, the separatrices are transversal, but the angle between them is exponentially small
compared to ε. This leads to severe problems in numerical simulations. Gelfreich and Simó [59]
use a homoclinic invariant ω that gives the area of a parallelogram defined by two vectors tangent
to the stable and the unstable manifolds at the homoclinic point. While ω in the standard map
can be represented by an asymptotic series, one question is what happens when we use several
generalizations of the standard map. In [59], the authors employed high-precision computation
of the homoclinic invariant and consecutive extraction of coefficients of an asymptotic expansion,
in order to obtain a numerical evidence that various different types of asymptotic expansions
arise in this class of problems. These results are unachievable using standard double precision; in
some numerical simulations 1000-digit precision was required. In the literature there are other
numerous examples of high-precision computation of this phenomena of exponentially small
splitting of separatrices.

3.6 Detecting Strange Nonchaotic Attractors

In the study of dynamics of dissipative systems the detection of the attractors is quite important,
because they are the visible invariant sets of the dynamics of the problem. An attractor is defined
as strange if it is not a piecewise smooth manifold and chaotic if any orbit on it exhibits sensitive
dependence on initial conditions. All the first examples of strange attractors in the literature
where strange chaotic attractors, but soon some strange nonchaotic attractors (SNAs) were
identified [62]. Several authors suggested that in the transition to chaos in quasiperiodically
forced dissipative systems, in particular in the so called fractalization route in which a smooth
torus seems to fractalize, strange nonchaotic attractors appear. In [65], Haro and Simó showed
that in truth some of these attractors are nonstrange. These authors found that multiprecision
arithmetic with more than 30 digits was needed to reliably study this behavior at very small
scales. For example, in Fig. 11 we show the attractor of the RH map given by

xn+1 = 1 + yn − ax2
n + ε cos(2πθn),

yn+1 = bxn,
θn+1 = θn + ω (mod 1).

This model is expected to be the scenario of the creation of SNAs through the fractalization
route in which a smooth torus seems to fractalize, but although for low to double-precision
simulations the attractor seems to be strange (see first, zoom-1 and zoom-2 pictures of Fig. 11),
when one go to a scale 10−26 we may appreciate that the attractor do not seems to be strange
(see zoom-3 picture of Fig. 11). Therefore, in this case (and in many cases) the SNAs is not
produced via the fractalization route, but what is evident is that this phenomena requires a very
high-precision numerical simulation to give a correct information of what really happens on the
systems.

18

0 0.2 0.4 0.6 0.8 1 θ
-2

-1

0

1

2

x

R H map: a= 0.7, b= 0.1, ε= 0.7

-0.8

-0.6

-0.4

-0.2

0

0.2

x

θp
=θ0+10-10θ0= 0.8754571539

-0.8

-0.6

-0.4

-0.2

0

0.2

x

θp
=θ0+10-20θ0= 0.87545715390369882716

-0.8

-0.6

-0.4

-0.2

0

0.2

x

θp
=θ0+10-26θ0= 0.87545715390369882716305289

zoom 1

zoom 2

zoom 3

Figure 11: The attractor of the RH map with a = 0.7, b = 0.1, ω = (
√

5 − 1)/2 and ε = 0.7,
and several zooms. (Reproduced with permission from [65]).

In some systems the Lyapunov sum can display arbitrarily large oscillations around the
average line [45]. This means that, if the oscillations are wide enough, roundoff errors are
locally amplified by a large factor. This may give us a numerically observed behavior which is
completely wrong. An interesting example is the Logistic family driven by a rigid rotation [45]
given by

xn+1 = 1− (a+ ε sin(2πθn))x2
n,

θn+1 = θn + α (mod 1).

In this case we may observe how a numerically computed orbit can depend strongly on the
precision used in its computation. Note that in this system the Lyapunov sum decreases during
the first 600 iterates to the minimum value of −665, later increases in the next 800 iterates till
−460 and decreases again, and so on (with an average line that decreases). This means that
the local errors increase by about exp(−460 + 665) ≈ 1089 in 1400 iterates. And as result we
can imagine that using a precision lower than 10−89 will lead to erroneous results. In Fig. 12
we may observe the consequences, double precision and 60 digits lead to what it seems to be a
SNAs. But if we repeat the calculus with 150 digits we observe that this was just an spurious

19

result of insufficient accuracy on the simulations.

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

DP

x

θ

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

digits = 60

x

θ

-0.5

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

x

θ

digits = 150

Figure 12: Attractors of the Logistic family driven by a rigid rotation with standard double
precision (DP), 60 and 150 decimal digits, for (a, ε, α) = (1.30, 0.30, γ/1000), where γ denotes
the Golden Mean. (Reproduced with permission from [45]).

4 Experimental mathematics

In this section we give a selection of five less directly applied applications:

4.1 Integer relation methods and digit formulas

Very high-precision computations (typically 100 to several thousand digits) have proven to be
an essential tool for the emerging discipline of “experimental mathematics” [35, 8]. One of the
key techniques used here is the PSLQ integer relation detection algorithm [15], which, given an
n-long vector (xi) of real numbers (presented as a vector of high-precision values), attempts to
recover the integer coefficients (ai), not all zero, such that

a1x1 + a2x2 + · · ·+ anxn = 0 (8)

(to available precision), or else determines that there are no such integers (ai) of a given size.
The PSLQ algorithm operates by developing, iteration by iteration, an integer-valued matrix
A that successively reduces the maximum absolute value of the entries of the vector y = Ax
(where x is the input vector mentioned above), until one of the entries of y is zero or within an
“epsilon” of zero. With PSLQ or any other integer relation detection scheme, if the underlying
integer relation vector of length n has entries of maximum size d digits, then the input data
must be specified to at least nd-digit precision (and the algorithm must be performed using this
precision level) or else the true relation will be lost in a sea of spurious artifacts of numerical
round-off error.

Perhaps the best-known application of PSLQ in experimental mathematics is the 1996
computer-based discovery of what is now known as the “BBP” formula for π:

π =
∞∑
k=0

1
16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (9)

20

This formula has the remarkable property that it permits one to calculate binary or hexadecimal
digits beginning at the n-th digit, without needing to calculate any of the first n−1 digits, using
a simple scheme that requires very little memory and no multiple-precision arithmetic software
[7], [35, pp. 135–143]. In 2010, Tse Wo Zse, a researcher with Yahoo! Cloud Computing, used
a variant of this formula to compute a string of hexadecimal digits of π beginning at the 500
trillionth digit (corresponding to the two quadrillionth binary digit) [88].

Since 1996, numerous other formulas of this type have been found using PSLQ and then sub-
sequently proven [6]. Here are three example — a base 26 formula for π2, a base 36 formula for π2

and a base 212 formula for Catalan’s constantG =
∑∞

n=0(−1)n/(2n+1)2 = 0.91596559417722 . . .:

π2 =
9
8

∞∑
k=0

1
64k

(
16

(6k + 1)2
− 24

(6k + 2)2
− 8

(6k + 3)2
− 6

(6k + 4)2
+

1
(6k + 5)2

)
. (10)

π2 =
2
27

∞∑
k=0

1
729k

(
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2
− 27

(12k + 5)2

− 72
(12k + 6)2

− 9
(12k + 7)2

− 9
(12k + 8)2

− 5
(12k + 10)2

+
1

(12k + 11)2

)
. (11)

G =
1

4096

∞∑
k=0

1
4096k

(
36864

(24k + 2)2
− 30720

(24k + 3)2
− 30720

(24k + 4)2
− 6144

(24k + 6)2
− 1536

(24k + 7)2

+
2304

(24k + 9)2
+

2304
(24k + 10)2

+
768

(24k + 14)2
+

480
(24k + 15)2

+
384

(24k + 11)2
+

1536
(24k + 12)2

+
24

(24k + 19)2
− 120

(24k + 20)2
− 36

(24k + 21)2
+

48
(24k + 22)2

− 6
(24k + 23)2

)
. (12)

As with the original BBP formula for π, these formulas permit one to directly calculate
digits beginning at an arbitrary starting point, thus making accessible mathematical objects
that until very recently had widely been regarded as forever inaccessible to human reasoning or
machine computation. In 2011, equation (10) was employed to calculate base-64 digits of π2;
equation (11) was employed to calculate base-729 digits of π2; and equation (12) was employed
to calculate base-4096 digits of G; in each case beginning at the ten trillionth position and
validated by a second independent computation. The resulting base-8 digit string of π2 is

60114505303236475724500005743262754530363052416350634

(with each pair of base-8 digits corresponding to a base-64 digit). The resulting base-9 digit
string of π2 is

12264485064548583177111135210162856048323453468

(with each triplet of base-9 digits corresponds to one base-729 digit). The resulting base-8 string
of Catalan’s constant G is

34705053774777051122613371620125257327217324522

(with each quadruplet of base-8 digits corresponding to one base-4096 digit). This suite of
computations involved 1.549×1019 floating point operations, which is comparable to the cost of

21

the most sophisticated animated movies as of the present time (2011). However, a clever choice of
formulas, again discovered using a high-precision PSLQ program, resulted in significant savings
particularly for the Catalan constant calculation [14].

4.1.1 BBP series and normality

In an unexpected turn of events, it has been found that these computer-discovered formulas
have implications for the age-old question of whether (and why) the digits of certain well-
known math constants are statistically random. In particular, one of the present researchers
and Richard Crandall found that the question of whether constants such as π and log 2 are
2-normal (i.e., every string of m binary digits appears, in the limit, with frequency 2−m) reduces
to a conjecture about the behavior of a certain explicit pseudorandom number generator that is
related to the respective BBP-type formula for that constant [16], [35, pp. 163–178]. This same
line of investigation has led to a formal proof of normality for an uncountably infinite class of
explicit real numbers [17], the simplest instance of which is

α2,3 =
∞∑
n=1

1
3n23n

,

which is provably 2-normal.

4.2 Nonlinear oscillator theory

One application of experimental mathematical techniques to a mathematical physics problem
was inspired by a recent paper by Quinn, Rand, and Strogatz. They described a nonlinear
coupled oscillator system in which phase transition was described by means of the formula

0 =
N∑
i=1

(
2
√

1− s2(1− 2(i− 1)/(N − 1))2 − 1√
1− s2(1− 2(i− 1)/(N − 1))2

)
. (13)

They noted that for large N , s ≈ 1 − c/N , where c = 0.6054436... . These researchers asked
two of the present authors and Richard Crandall to validate and extend this computation, and
challenged us to identify this limit if it exists. By means of a Richardson extrapolation scheme,
implemented on 64-CPUs of a highly parallel computer system, we computed (using the QD
software)

c = 0.6054436571967327494789228424472074752208996 . . .

This calculation led to a proof that the limit c exists and is the positive root of the Hurwitz zeta
function

ζ (1/2, c/2) = 0,

where ζ(s, a) :=
∑

n≥0 1/(n+a)s. Moreover, we were able to sketch the higher-order asymptotic
behavior [12], something that would have been impossible without discovery of an analytic
formula.

22

Such systems are especially interesting in light of even more recent work by Steve Strogatz
and his collaborators on chimera — coupled systems which can self-organize in parts of their
domain and remain disorganized elsewhere. See Figure 13, taken from [4], in which (b) in the left
panel shows a coupled system which has partial self-organized and (c) shows how well prediction
and simulation agree.

remains constant, except for slight fluctuations due to
finite-size effects. Thus, this chimera is stable and statisti-
cally stationary. However, if we increase � (the coupling
within a population) relative to � (the coupling between
populations), the stationary state can lose stability. Now the
order parameter pulsates, and the chimera starts to breathe
[Fig. 2(b)]. The breathing cycle lengthens as we increase
the disparity A � �� � between the couplings [Fig. 2(c)].
At a critical disparity, the breathing period becomes infi-
nite. Beyond that, the chimera disappears and the synchro-
nized state becomes a global attractor.

To explain these results, we analyze Eq. (1) in the
continuum limit where N� ! 1 for � � 1, 2. Then
Eq. (1) gives rise to the continuity equations

@f�

@t
�

@
@�
�f�v�� � 0; (2)

where f���; t� is the probability density of oscillators in
population �, and v���; t� is their velocity, given by

 v���; t� � !�
X2

�0�1

K��0
Z

sin��0 � �� ��f�
0
��0; t�d�0:

(3)

(Note that we dropped the superscripts on � to ease the
notation. Thus, � means �� and �0 means ��

0
.) If we define

a complex order parameter

 z��t� �
X2

�0�1

K��0
Z
ei�

0
f�

0
��0; t�d�0; (4)

then v���� simplifies to

 v���; t� � !�
1

2i
�z�e

�i�e�i� � z��e
i�ei��; (5)

where the � denotes complex conjugate.
Following Ott and Antonsen [11], we now consider a

special class of density functions f� that have the form of a
Poisson kernel. The remarkable fact that Ott and Antonsen
discovered is that such kernels satisfy the governing equa-
tions exactly, if a certain low-dimensional system of ordi-
nary differential equations is satisfied. In other words, for
this family of densities, the dynamics reduce from infinite
dimensional to finite (and low) dimensional. (Numerical
evidence suggests that all attractors lie in this family, but
proving this remains an open problem.) Specifically, let

 f���; t� �
1

2�

�
1�

�X1
n�1

�a��t�ei��n � c:c:
��
: (6)

What is special here is that we use the same function a��t�
in all the Fourier harmonics, except that a� is raised to the
nth power in the nth harmonic. Inserting this f� into the
governing equations, one finds that this is an exact solution,
as long as

 _a � � i!a� �
1
2�a

2
�z�e�i� � z��ei�� � 0: (7)

Instead of infinitely many amplitude equations, we have
just one. (It is the same equation for all n.)

To close the system, we express the complex order
parameter z� in terms of a�. Inserting the Poisson kernel
(6) into Eq. (4), and performing the integrations, yields

 z��t� �
X2

�0�1

K��0a
�
�0 �t�; (8)

 0

 1

 0

 1

 0

 1

 0 500 1000

t

r

a

b

c

FIG. 2 (color online). Order parameter r versus time. In all
three panels, N1 � N2 � 128 and � � 0:1. (a) A � 0:2: stable
chimera; (b) A � 0:28: breathing chimera; (c) A � 0:35: long-
period breather. Numerical integration began from an initial
condition close to the chimera state, and plots shown begin after
allowing a transient time of 2000 units.

−π

π

θj

oscillator index j f (θ)

a b c

FIG. 1 (color online). Snapshot of a chimera state, obtained by
numerical integration of (1) with � � 0:1, A � 0:2, and N1 �
N2 � 1024. (a) Synchronized population. (b) Desynchronized
population. (c) Density of desynchronized phases predicted by
Eqs. (6) and (12) (smooth curve) agrees with observed histo-
gram.

PRL 101, 084103 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
22 AUGUST 2008

084103-2

Figure 13: Simulated chimera. (Left) Snapshot of a chimera state, obtained by numerical inte-
gration. (a) Synchronized population. (b) Desynchronized population. (c) Predicted density of
desynchronized phases (smooth curve) agrees with observed histogram. (Right) Order parame-
ter r versus time. (a) stable chimera; (b) breathing chimera; (c) long-period breather. Numerical
integration began from an initial condition close to the chimera state, and plots shown begin
after allowing a transient time of 2000 units. (Figures and parameters from [4])

4.3 Ising integrals

Very high-precision computations, combined with the PSLQ algorithm, have been remarkably
effective in recognizing (in terms of analytic formulas) certain classes of definite integrals that
arise in mathematical physics settings. Such results are highly prized by mathematical physicists,
because they can be used in asymptotic expansions or other useful analytic expressions. Results
of this sort remain hidden if one merely computes standard-precision numerical values.

These studies most often have employed either Gaussian quadrature (in cases where the
function is well behaved in a closed interval) or the “tanh-sinh” quadrature scheme due to Taka-
hasi and Mori [87] (in cases where the function has an infinite derivative or blow-up singularity
at one or both endpoints). For many integrand functions, these schemes exhibit “quadratic” or
“exponential” convergence — dividing the integration interval in half (or, equivalently, doubling
the number of evaluation points) approximately doubles the number of correct digits in the
result [19].

23

In one study, the tanh-sinh quadrature scheme, implemented using the ARPREC software,
was employed to study the following classes of integrals [11]. Here, the Dn integrals arise in
the Ising theory of mathematical physics, and the Cn have tight connections to quantum field
theory:

Cn =
4
n!

∫ ∞
0
· · ·
∫ ∞

0

1(∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un

Dn =
4
n!

∫ ∞
0
· · ·
∫ ∞

0

∏
i<j

(
ui−uj
ui+uj

)2

(∑n
j=1(uj + 1/uj)

)2

du1

u1
· · · dun

un

En = 2
∫ 1

0
· · ·
∫ 1

0

 ∏
1≤j<k≤n

uk − uj
uk + uj

2

dt2 dt3 · · · dtn,

where (in the last line) uk =
∏k
i=1 ti.

Needless to say, evaluating these n-dimensional integrals to high precision presents a daunting
computational challenge. Fortunately, in the first case, we were able to show that the Cn integrals
can be written as one-dimensional integrals:

Cn =
2n

n!

∫ ∞
0

pKn
0 (p) dp,

where K0 is the modified Bessel function [3]. After computing Cn to 1000-digit accuracy for
various n, we were able to identify the first few instances of Cn in terms of well-known constants,
e.g., C4 = 7ζ(3)/12, where ζ denotes the Riemann zeta function. When we computed Cn for
fairly large n, for instance

C1024 = 0.63047350337438679612204019271087890435458707871273234 . . . ,

we found that these values rather quickly approached a limit. By using the new edition of the
Inverse Symbolic Calculator, available at http://carma-lx1.newcastle.edu.au:8087, this numer-
ical value can be identified as

lim
n→∞

Cn = 2e−2γ ,

where γ is Euler’s constant, which we were subsequently able to prove [11].
The integrals Dn and En are much more difficult to evaluate, since they are not reducible to

one-dimensional integrals (as far as we can tell), but with certain symmetry transformations and
symbolic integration we were able to reduce the dimension in each case by one or two. In the case
of D5 and E5, the resulting 3-D integrals are extremely complicated, but we were nonetheless
able to numerically evaluate these to at least 240-digit precision using highly parallel computer
systems at Virginia Tech and at the Lawrence Berkeley National Lab. In this way, we produced

24

the following evaluations, all of which except the last we subsequently were able to prove:

D2 = 1/3
D3 = 8 + 4π2/3− 27 L−3(2)
D4 = 4π2/9− 1/6− 7ζ(3)/2
E2 = 6− 8 log 2
E3 = 10− 2π2 − 8 log 2 + 32 log2 2
E4 = 22− 82ζ(3)− 24 log 2 + 176 log2 2− 256(log3 2)/3 + 16π2 log 2− 22π2/3

E5
?= 42− 1984 Li4(1/2) + 189π4/10− 74ζ(3)− 1272ζ(3) log 2 + 40π2 log2 2
−62π2/3 + 40(π2 log 2)/3 + 88 log4 2 + 464 log2 2− 40 log 2,

where Li denotes the polylogarithm function. In the case of D2, D3 and D4, these are confir-
mations of known results. We tried but failed to recognize D5 in terms of similar constants (the
500-digit numerical value is available if anyone wishes to try). The conjectured identity shown
here for E5 was confirmed to 240-digit accuracy, which is 180 digits beyond the level that could
reasonably be ascribed to numerical round-off error; thus we are quite confident in this result
even though we do not have a formal proof [11].

4.4 Random walks

A more recent numerical study considered, for complex s, the n-dimensional ramble integrals [9]

Wn(s) =
∫

[0,1]n

∣∣∣∣∣
n∑
k=1

e2πxki

∣∣∣∣∣
s

dx, (14)

which occur in the theory of uniform random walk integrals in the plane, where at each step
a unit-step is taken in a random direction. Integrals such as (14) are the s-th moment of the
distance to the origin after n steps. It is shown in [42] that when s = 0 the first derivatives of
these integrals can be written as

W ′n(0) = log(2)− γ −
∫ 1

0
(Jn0 (x)− 1)

dx
x
−
∫ ∞

1
Jn0 (x)

dx
x

(15)

= log(2)− γ − n
∫ ∞

0
log(x)Jn−1

0 (x)J1(x)dx, (16)

where Jn(x) denotes the Bessel function of the first kind.
Due to the oscillatory nature of these integrals, they present substantial challenges for high-

precision numerical integration. One approach that we have found effective for these integrals
is known as the Sidi mW extrapolation algorithm, as described in a 1994 paper by Lucas and
Stone [75] (which in turn is based on two earlier papers by Sidi [83, 84]), combined with tanh-
sinh quadrature and Gaussian quadrature [9]. Using this scheme, we were able to evaluate
these integrals to 1000-digit accuracy, at least when n is odd, using the ARPREC software.
This scheme is not very effective when n is even, but in this case we were able to compute

25

modestly high precision results (50–100 digits) by employing asymptotic formulas for the Bessel
function. In response to this ineffectiveness, Sidi [85] has made an analysis and proposed a more
sophisticated scheme which should redress the situation.

These results were used to verify several other studies. For instance, our result when n = 6
matched to 80-digit precision a computation based on a conjecture due to Villegas [43]. Similarly,
for n = 4 our 80-digit result agrees to full precision with the closed form given in [42].

Our calculations also confirmed, to 600-digit precision, the following amazing conjecture
based on one of Villegas, [43]:

W
′
5(0) ?=

(
15
4π2

)5/2 ∫ ∞
0

{
η3(e−3t)η3(e−5t) + η3(e−t)η3(e−15t)

}
t3 dt, (17)

where

η(q) = q1/24
∏
n≥1

(1− qn) = q1/24
∞∑

n=−∞
(−1)nqn(3n+1)/2. (18)

While the intuitive genesis of equation (17) lies in algebraic K-theory, it is fair to say that there
is no inkling of how to prove it.

4.5 Moments of elliptic products

The research on ramble integrals also led us to examine moments of elliptic integral functions
of the form [9]:

I(n0, n1, n2, n3, n4) =
∫ 1

0
xn0Kn1(x)K ′n2(x)En3(x)E′n4(x)dx, (19)

where the elliptic functions K,E and their complementary versions are given by:

K(x) =
∫ 1

0

dt√
(1− t2)(1− x2t2)

K ′(x) = K(
√

1− x2)

E(x) =
∫ 1

0

√
1− x2t2√
1− t2

dt E′(x) = E(
√

1− x2). (20)

To better understand these product integrals, we computed a large number of them (4389
individual integrals in total) to extreme precision — 1500 to 3000-digit precision — using the
ARPREC software. We then discovered, using PSLQ, thousands of intriguing relations between

26

these numerical values, including the following limited selection [9]:

81
∫ 1

0
x3K2(x)E(x)dx ?= −6

∫ 1

0
K3(x)dx− 24

∫ 1

0
x2K3(x)dx

+51
∫ 1

0
x3K3(x)dx+ 32

∫ 1

0
x4K3(x)dx (21)

−243
∫ 1

0
x3K(x)E(x)K ′(x)dx ?= −59

∫ 1

0
K3(x)dx+ 468

∫ 1

0
x2K3(x)dx

+156
∫ 1

0
x3K3(x)dx− 624

∫ 1

0
x4K3(x)dx− 135

∫ 1

0
xK(x)E(x)K ′(x)dx (22)

−20736
∫ 1

0
x4E2(x)K ′(x)dx ?= 3901

∫ 1

0
K3(x)dx− 3852

∫ 1

0
x2K3(x)dx

−1284
∫ 1

0
x3K3(x)dx+ 5136

∫
x4K3(x)dx− 2592

∫ 1

0
x2K2(x)K ′(x)dx

−972
∫ 1

0
K(x)E(x)K ′(x)dx− 8316

∫ 1

0
xK(x)E(x)K ′(x)dx. (23)

These identities led to a detailed study by James Wan [92] who has been able to prove many
but by no means all of them.

5 Other brief examples

We briefly summarize here a number of other applications of high-precision arithmetic that have
been reported to us. For additional details, please see the listed references.

5.1 Supernova simulations

Recently Edward Baron, Peter Hauschildt, and Peter Nugent used the QD package to solve
for the non-local thermodynamic equilibrium populations of iron and other atoms in the atmo-
spheres of supernovae and other astrophysical objects [20, 66]. Iron, for example, may exist
as Fe II in the outer parts of the atmosphere, but in the inner parts Fe IV or Fe V could be
dominant. Introducing artificial cutoffs leads to numerical glitches, so it is necessary to solve
for all of these populations simultaneously. Since the relative population of any state from the
dominant stage is proportional to the exponential of the ionization energy, the dynamic range of
these numerical values can be large. Among various potential solutions, these authors found that
using double-double (or, in some cases, quad-double) arithmetic to be the most straightforward
and effective.

5.2 Climate modeling

It is well-known that climate simulations are fundamentally chaotic — if microscopic changes are
made to the present state, within a certain period of simulated time the future state is completely

27

different. Indeed, ensembles of these calculations are required to obtain statistical confidence
in global climate trends produced from such calculations. As a result, climate modeling codes
quickly diverge from any “baseline” calculation, even if only the number of processors used to
run the code is changed. For this reason, it is often difficult for researchers to compare results, or
even to determine whether they have correctly deployed their code on a given system. Recently
Helen He and Chris Ding found that almost all of the numerical variation in an atmospheric code
occurred in a long inner product loop in the data assimilation step and in a similar operation
in a large conjugate gradient calculation. He and Ding found that employing double-double
arithmetic for these loops dramatically reduced the numerical variability of the entire application,
permitting computer runs to be compared for much longer run times than before [68].

5.3 Coulomb n-body atomic system simulations

Numerous computations have been performed using high-precision arithmetic to study atomic-
level Coulomb systems. For example, Alexei Frolov of Queen’s University in Ontario, Canada has
used high-precision software to solve the generalized eigenvalue problem (Ĥ −EŜ)C = 0, where
the matrices Ĥ and Ŝ are large (typically 5, 000×5, 000 in size) and very nearly degenerate. Until
recently, progress in this arena was severely hampered by the numerical difficulties induced by
these nearly degenerate matrices. Frolov found that by employing 120-digit arithmetic, “we can
consider and solve the bound state few-body problems which have been beyond our imagination
even four years ago” [18, 57].

5.4 Studies of the fine structure constant of physics

In the past few years, significant progress has been achieved in using high-precision arithmetic to
obtain highly accurate solutions to the Schrodinger equation for the lithium atom. In particular,
the non-relativistic ground state energy has been calculated to an accuracy of a few parts in a
trillion, a factor of 1500 improvement over the best previous results. With these highly accurate
wave functions, researchers have been able to test the relativistic and QED effects at the 50
parts per million (ppm) level and also at the one ppm level [93]. Along this line, a number
of properties of lithium and lithium-like ions have also been calculated, including the oscillator
strengths for certain resonant transitions, isotope shifts in some states, dispersion coefficients
and Casimir-Polder effects between two lithium atoms. When some additional computations are
completed, the fine structure constant may be obtained to an accuracy of 16 parts per billion
[94].

5.5 Scattering amplitudes of quarks, gluons and bosons

An international team of physicists working on the Large Hadron Collider (LHC) is computing
scattering amplitudes involving quarks, gluons and gauge vector bosons, in order to predict what
results could be expected on the LHC. By default, these computations are performed using con-
ventional double precision (64-bit IEEE) arithmetic. Then if a particular phase space point is
deemed numerically unstable, it is recomputed with double-double precision. These researchers

28

expect that further optimization of the procedure for identifying unstable points may be re-
quired to arrive at an optimal compromise between numerical accuracy and performance. Their
objective is to design a procedure where the number of digits in the higher precision calculation
is dynamically set according to the instability of the point [54]. Three related applications of
high-precision arithmetic are given in [34, 80, 48].

6 Conclusion

We have presented here a brief survey of the rapidly expanding applications of high-precision
arithmetic in modern scientific computing. It is worth noting that all of these examples have
arisen in the past ten years. Thus we may be witnessing the birth of a new era of scientific
computing, in which the numerical precision required for a computation is as important to the
program design as are the algorithms and data structures. We hope that our survey and analysis
of these computations will be useful in this process.

References

[1] A. Abad, R. Barrio, F. Blesa and M. Rodriguez, “TIDES: a Taylor series Integrator for
Differential EquationS,” 2011, http:gme.unizar.es/software/tides.

[2] Alberto Abad, Roberto Barrio, and Angeles Dena, “Computing periodic orbits with
arbitrary precision,” Phys. Rev. E, vol. 84 (2011), 016701.

[3] M. Abramowitz and I. A. Stegun, ed., Handbook of Mathematical Functions, Dover, New
York, 1972.

[4] D. M. Abrams, R. Mirollo, S. H. Strogatz and D. A. Wiley, “Solvable model for chimera
states of coupled oscillators,” Physical Review Letters, vol. 101 (2008), 084103.

[5] J. Applegate, M. Douglas, Y. Gursel, G. J. Sussman and J. Wisdom, “The outer solar
system for 200 Million years,” Astronomical Journal, vol. 92 (1986), 176–194.

[6] D. H. Bailey, “A compendium of BBP-type formulas,” Apr. 2011, available at
http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-formulas.pdf. An interactive
database is online at http://bbp.carma.newcastle.edu.au.

[7] D. H. Bailey, P. B. Borwein, and S. Plouffe, “On the rapid computation of various
polylogarithmic constants,” Math. of Computation, vol. 66 (Apr 1997), 903–913.

[8] D. H. Bailey and J. M. Borwein, “Experimental mathematics: Examples, methods and
implications,” Notices of the AMS, vol. 52 (May 2005), 502-514.

[9] D. H. Bailey and J. M. Borwein, “Hand-to-hand combat with thousand-digit integrals,”
Journal of Computational Science, to appear,
http://crd.lbl.gov/~dhbailey/dhbpapers/combat.pdf.

29

[10] D. H. Bailey, J. M. Borwein, D. Broadhurst and M. L. Glasser, “Elliptic integral
evaluations of Bessel moments,” J. Physics A: Math. and Gen., vol. 41 (2008), 205203.

[11] D. H. Bailey, J. M. Borwein and R. E. Crandall, “Integrals of the Ising class,” J. Physics
A: Math. and Gen., vol. 39 (2006), 12271–12302.

[12] D. H. Bailey, J. M. Borwein and R. E. Crandall, “Resolution of the Quinn-Rand-Strogatz
constant of nonlinear physics,” Exp. Mathematics, vol. 18 (2009), 107–116.

[13] D. H. Bailey, D. Borwein, J. M. Borwein and R. Crandall, “Hypergeometric forms for
Ising-class integrals,” Exp. Mathematics, vol. 16 (2007), 257–276.

[14] D. H. Bailey, J. M. Borwein, A. Mattingly and G. Wightwick, “The computation of
previously inaccessible digits of π2 and Catalans constant,” Notices of the AMS, to
appear, 2011, http://crd.lbl.gov/~dhbailey/dhbpapers/bbp-bluegene.pdf.

[15] D. H. Bailey and D. Broadhurst, “Parallel integer relation detection: Techniques and
applications,” Math. of Computation, vol. 70 (2000), 1719–1736.

[16] D. H. Bailey and R. E. Crandall, “On the random character of fundamental constant
expansions,” Exp. Mathematics, vol. 10 (2001), 175–190.

[17] D. H. Bailey and R. E. Crandall, “Random generators and normal numbers,” Exp.
Mathematics, vol. 11 (2004), 527–546.

[18] D. H. Bailey and A. M. Frolov, “Universal variational expansion for high-precision
bound-state calculations in three-body systems. Applications to weakly-bound, adiabatic
and two-shell cluster systems,” J. Physics B, vol. 35 (2002), 42870–4298.

[19] D. H. Bailey, X. S. Li and K. Jeyabalan, “A comparison of three high-precision
quadrature schemes,” Exp. Mathematics, vol. 14 (2005), 317–329.

[20] E. Baron and P. Nugent, personal communication, Nov. 2004.

[21] R. Barrio, “Rounding error bounds for the Clenshaw and Forsythe algorithms for the
evaluation of orthogonal polynomial series,” J. Comput. Appl. Math. 138 (2002) 1985–204.

[22] R. Barrio, “Performance of the Taylor series method for ODEs/DAEs,” Appl. Math.
Comput., vol. 163 (2005), 525–545.

[23] R. Barrio, “Sensitivity analysis of ODEs/DAEs using the Taylor series method,” SIAM
Journal on Scientific Computing, vol. 27 (2006), 1929–1947.

[24] R. Barrio and F. Blesa, “Systematic search of symmetric periodic orbits in 2DOF
Hamiltonian systems,” Chaos, Solitons and Fractals, vol. 41 (2009), 560–582.

[25] R. Barrio, F. Blesa, M. Lara, “VSVO formulation of the Taylor method for the numerical
solution of ODEs,” Comput. Math. Appl., vol. 50 (2005), 93–111.

30

[26] R. Barrio, F. Blesa and S. Serrano, “Qualitative analysis of the (n+ 1)-body ring
problem,” Chaos Solitons Fractals, vol. 36 (2008), 1067–1088.

[27] R. Barrio, B. Melendo and S. Serrano, “Generation and evaluation of orthogonal
polynomials in discrete Sobolev spaces I. Algorithms,” J. Comput. Appl. Math., vol. 181
(2005), 280–298.

[28] R. Barrio, B. Melendo and S. Serrano, “On the numerical evaluation of linear
recurrences,” Journal of Computational and Applied Mathematics, vol. 150 (2003), 71–86.

[29] R. Barrio, M. Rodŕıguez, A. Abad, and F. Blesa, “Breaking the limits: the Taylor series
method,” Applied Mathematics and Computation, vol. 217 (2011), 7940–7954

[30] R. Barrio and S. Serrano, “Generation and evaluation of orthogonal polynomials in
discrete Sobolev spaces II. Numerical stability,” J. Comput. Appl. Math., vol. 181 (2005),
299–320.

[31] H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Finding best approximation pairs
relative to two closed convex sets in Hilbert spaces,” J. Approx. Theory, vol. 127 (2004),
178–192.

[32] H. H. Bauschke, P. L. Combettes, and D. R. Luke, “Phase retrieval, error reduction
algorithm, and Fienup variants: A view from convex optimization,” J. Opt. Soc. Amer. A,
vol. 19 (2002), 1334–1345.

[33] H. H. Bauschke, P. L. Combettes, and D. R. Luke, “A strongly convergent reflection
method for finding the projection onto the intersection of two closed convex sets in a
Hilbert space,” J. Approx. Theory, vol. 141 (2006), 63–69.

[34] C. F. Berger, Z. Bern, L. J. Dixon, F. Febres Cordero, D. Forde, H. Ita, D. A. Kosower
and D. Maitre, “An automated implementation of on-shell methods for one-loop
amplitudes,” Phys. Rev. D, vol. 78 (2008), 036003, http://arxiv.org/abs/0803.4180.

[35] J. M. Borwein and D. H. Bailey, Mathematics by Experiment: Plausible Reasoning in the
21st Century, A.K. Peters, Natick, MA, second edition, 2008.

[36] J. M. Borwein and D. H. Bailey, Experimentation in Mathematics: Computational Paths
to Discovery, A.K. Peters, Natick, MA, 2004.

[37] J. M. Borwein and P. B. Borwein, “The arithmetic-geometric mean and the fast
computation of elementary functions,” SIAM Review, vol. 26 (1984), 351–366.

[38] J. M. Borwein and P. B. Borwein, Pi and the AGM: A Study in Analytic Number Theory
and Computational Complexity, Canadian Mathematical Society Monographs,
Wiley-Interscience, New York, 1987, reprinted 1998.

31

[39] J. M. Borwein, P. B. Borwein, and D. H. Bailey, “Ramanujan, modular equations and pi
or how to compute a billion digits of pi,” American Mathematical Monthly, vol. 96 (1989),
201–219; reprinted in Organic Mathematics Proceedings,
http://www.cecm.sfu.ca/organics, April 12, 1996, with print version: CMS/AMS
Conference Proceedings, vol. 20 (1997), ISSN: 0731–1036.

[40] J. M. Borwein and B. Salvy, “A proof of a recursion for Bessel moments,” Exp.
Mathematics, vol. 17 (2008), 223–230.

[41] J. M. Borwein and B. Sims, “The Douglas-Rachford algorithm in the absence of
convexity,” Chapter 6, pp. 93–109 in Fixed-Point Algorithms for Inverse Problems in
Science and Engineering in Springer Optimization and Its Applications, in press, 2011.

[42] J. M. Borwein, A. Straub, and J. Wan, “Three-step and four-step random walk integrals,”
Experimental Mathematics, to appear, Sept 2010,
http://www.carma.newcastle.edu.au/~jb616/walks2.pdf.

[43] Jonathan M. Borwein, Armin Straub, James Wan and Wadim Zudilin, “Densities of short
uniform random walks,” Oct 2010,
http://www.carma.newcastle.edu.au/~jb616/densities.pdf.

[44] R. P. Brent and P. Zimmermann, Modern Computer Arithmetic, Cambridge Univ. Press,
2010.

[45] H. W. Broer, C. Simó and R. Vitolo, “Chaos and quasi-periodicity in diffeomorphisms of
the solid torus,” Discrete Contin. Dyn. Syst. Ser. B, vol. 14 (2005), 871–905.

[46] C.W. Clenshaw, “A note on the summation of Chebyshey series,” Math. Tab. Wash., vol.
9 (1955) 118–120.

[47] G. Corliss and Y. F. Chang, “Solving ordinary differential equations using Taylor series,”
ACM Trans. Math. Software, vol. 8 (1982), 114–144.

[48] M. Czakon, “Tops from light quarks: Full mass dependence at two-Loops in QCD,” Phys.
Lett. B, vol. 664 (2008), 307, http://arxiv.org/abs/0803.1400.

[49] T.J. Dekker, “A floating-point technique for extending the available precision,” Numer.
Math., vol. 18 (1971), 224–242.

[50] J. Demmel and P. Koev, “The accurate and efficient solution of a totally positive
generalized Vandermonde linear system,” SIAM J. of Matrix Analysis Applications, vol.
27 (2005), 145–152.

[51] W. D. Evans, L.L. Littlejohn, F. Marcellán, C. Markett and A. Ronveaux, “On recurrence
relations for Sobolev orthogonal polynomials,” SIAM J. Math. Anal., vol. 26 (1995),
446–467.

[52] J. Dongarra, “LAPACK,” http://www.netlib.org/lapack.

32

[53] J. Dongarra, “LINPACK,” http://www.netlib.org/linpack.

[54] R. K. Ellis, W. T. Giele, Z. Kunszt, K. Melnikov and G. Zanderighi, “One-loop
amplitudes for W+3 jet production in hadron collisions,” manuscript, 15 Oct 2008,
http://arXiv.org/abs/0810.2762.

[55] V. Elser, I. Rankenburg, and P. Thibault, “Searching with iterated maps”, Proceedings of
the National Academy of Sciences, vol. 104 (2007), 418–423.

[56] T. Ferris, Coming of Age in the Milky Way, HarperCollins, New York, 2003.

[57] A. M. Frolov and D. H. Bailey, “Highly accurate evaluation of the few-body auxiliary
functions and four-body integrals,” J. Physics B, vol. 36 (2003), 1857–1867.

[58] W. Gautschi, “Computational aspects of three-term recurrence relations,” SIAM Rev.,
vol. 9 (1967), 24–82.

[59] V. Gelfreich and C. Simó, “High-precision computations of divergent asymptotic series
and homoclinic phenomena,” Discrete Contin. Dyn. Syst. Ser. B, vol. 10 (2008), 511–536.

[60] S. Graillat, P. Langlois and N. Louvet, “Algorithms for accurate, validated and fast
polynomial evaluation,” Japan J. Indust. Appl. Math., vol. 26 (2009), 191–214.

[61] S. Gravel, and V. Elser, “Divide and concur: A general approach to constraint
satisfaction,” Phys. Rev. E, vol. 78 (2008), 036706.

[62] C. Grebogi, E. Ott, S. Pelikan, and J. A. Yorke, “Strange attractors that are not chaotic,”
Phys. D, vol. 13 (1984), 261–268.

[63] E. Hairer, S. Nørsett and G. Wanner, Solving ordinary differential equations. I. Nonstiff
problems, second edition, Springer Series in Computational Mathematics, vol. 8,
Springer-Verlag, Berlin, 1993.

[64] Vincent Hakim and Kirone Mallick, “Exponentially small splitting of separatrices,
matching in the complex plane and Borel summation,” Nonlinearity, vol. 6 (1993), 57–70.

[65] A. Haro and C. Simó, “To be or not to be a SNA: That is the question,” Preprint 2005-17
of the Barcelona UB-UPC Dynamical Systems Group (2005).

[66] P. H. Hauschildt and E. Baron, “The numerical solution of the expanding Stellar
atmosphere problem,” J. Comp. and Applied Math., vol. 109 (1999), 41–63.

[67] W. Hayes, “Is the outer solar system chaotic?,” Nature Physics, vol. 3 (2007), 689–691.

[68] Y. He and C. Ding, “Using accurate arithmetics to improve numerical reproducibility and
stability in parallel applications,” J. Supercomputing, vol. 18 (Mar 2001), 259–277.

[69] Y. Hida, X. S. Li and D. H. Bailey, “Algorithms for Quad-Double Precision Floating
Point Arithmetic,” 15th IEEE Symposium on Computer Arithmetic (ARITH-15), 2001.

33

[70] Hao Jiang, Roberto Barrio, Housen Li, Xiangke Liao, Lizhi Cheng, Fang Su, “Accurate
evaluation of a polynomial in Chebyshev form,” Applied Mathematics and Computation,
vol. 217 (2011), 9702–9716

[71] D. E. Knuth, The Art of Computer Programming: Seminumerical Algorithms.
Addison-Wesley, third edition, 1998.

[72] P. Koev, “Software,” 2010, http://math.mit.edu/~plamen/software.

[73] G. Lake, T. Quinn and D. C. Richardson, “From Sir Isaac to the Sloan survey:
Calculating the structure and chaos due to gravity in the universe,” Proc. of the 8th
ACM-SIAM Symp. on Discrete Algorithms, SIAM, Philadelphia, 1997, 1–10.

[74] J. S. W. Lamb, “Reversing symmetries in dynamical systems,” J. Phys. A: Math. Gen.,
vol. 25 (1992), 925–937.

[75] S. K. Lucas and H. A. Stone, “Evaluating infinite integrals involving Bessel functions of
arbitrary order,” Journal of Computational and Applied Mathematics, vol. 64 (1995),
217–231.

[76] V. F. Lazutkin, “Splitting of separatrices for the Chirikov standard map,” J. Math. Sci.,
vol. 128 (2005), 2687–2705.

[77] E. Lorenz, “Deterministic nonperiodic flow,” J. Atmospheric Sci., vol. 20 (1963), 130–141.

[78] J. E. Littlewood, A Mathematician’s Miscellany, Methuen and Co., London, 1953,
reprinted by Cambridge University Press, 1997.

[79] T. Ogita, S.M. Rump, and S. Oishi, “Accurate sum and dot product,” SIAM J. Sci.
Comput., vol. 26 (2005), 1955–1988.

[80] G. Ossola, C. G. Papadopoulos and R. Pittau, “CutTools: A program implementing the
OPP reduction method to compute one-loop amplitudes,” J. High-Energy Phys., vol. 0803
(2008), 042, http://arxiv.org/abs/0711.3596.

[81] W. H. Press, S. A. Eukolsky, W. T. Vetterling and B. P. Flannery, Numerical Recipes:
The Art of Scientific Computing, 3rd edition, Cambridge University Press, 2007.

[82] S.M. Rump, “Verification methods: rigorous results using floating-point arithmetic,” Acta
Numer., vol. 19 (2010), 287–449.

[83] Avram Sidi, “The numerical evaluation of very oscillatory infinite integrals by
extrapolation,” Mathematics of Computation, vol. 38 (1982), 517–529.

[84] Avram Sidi, “A user-friendly extrapolation method for oscillatory infinite integrals,”
Mathematics of Computation, vol. 51 (1988), 249–266.

34

[85] Avram Sidi, “A user-friendly extrapolation method for computing infinite-range integrals
of products of oscillatory functions,” IMA Journal of Numerical Analysis, to appear
(2011) doi:10.1093/imanum/drr022.

[86] C. Simó, “Global dynamics and fast indicators,” in Global Analysis of Dynamical Systems,
373–389, Inst. Phys., Bristol, 2001.

[87] H. Takahasi and M. Mori, “Double exponential formulas for numerical integration,” Pub.
RIMS, Kyoto University, vol. 9 (1974), 721–741.

[88] Tse-Wo Zse, personal communication to the authors, July 2010.

[89] D. Viswanath, “The Lindstedt-Poincaré technique as an algorithm for computing periodic
orbits,” SIAM Review, vol. 43 (2001), 478–495.

[90] D. Viswanath, “The fractal property of the Lorenz attractor,” Phys. D, vol. 190 (2004),
115–128.

[91] D. Viswanath and S. Şahutǒglu, “Complex singularities and the Lorenz attractor,” SIAM
Rev., vol. 52 (2010), 294–314.

[92] J. Wan, “Moments of products of elliptic integrals,” preprint, October 2010.

[93] Z.-C. Yan and G. W. F. Drake, “Bethe logarithm and QED shift for Lithium,” Phys. Rev.
Letters, vol. 81 (2003), 774–777.

[94] T. Zhang, Z.-C. Yan and G. W. F. Drake, “QED corrections of O(mc2α7 lnα) to the fine
structure splittings of Helium and He-Like ions,” Phys. Rev. Letters, vol. 77 (1994),
1715–1718.

35

